If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-8t-72=0
a = 1; b = -8; c = -72;
Δ = b2-4ac
Δ = -82-4·1·(-72)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{22}}{2*1}=\frac{8-4\sqrt{22}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{22}}{2*1}=\frac{8+4\sqrt{22}}{2} $
| 3(x-5)-x=2x=15 | | X^2+7x+75/2=0 | | x+10=x+82 | | X2+2.4x=-0.8 | | 3y-5+6y=30 | | (5x+7)=(x-71) | | v/8.6+11.3=10.8 | | 2x-61=x | | 11.8-x=27.2+x | | -8(x-3)=-4x-16 | | -7=(4-4x)/5 | | X^2+7x=207/4 | | (x+21)=(5x-39) | | 8-0.5x=11-x | | 5(x+2)-6=4(x-3)+20 | | 8x2=15-14x | | A=1/2(x)(x-1) | | x-4/6=3/4 | | 0.5r-3=3-4-1.5 | | -10.2(x-2.9)=-214.2 | | 38+7k=8{k+4} | | 5a+1=29 | | 6x+12=3(2x+5)-5 | | (4m+7)/2=18 | | 5u-47=-6(u-5) | | 0.8x+3=9 | | -9(y+1)=-4-39 | | (5x-3)=2 | | 4x-2x+3x-4=11 | | 19−3b=-b−19 | | -23=5(t+4) | | 5x+2x+10=3x+50 |